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Abstract

We study two logical formalisms of different expressive strengths for deal-
ing with qualitative distance information. We utilise Theodore de Laguna’s
concept of ‘can-connect’ as a framework for handling this kind of infor-
mation. This also allows us to seamlessly handle distance information
using a more cognitively plausible, point-free ontological basis. The first-
order logic we studied have very nice expressive capabilities and it is
finitely axiomatisable, but as expected it is undecidable. We also explored
a computationally more feasible alternative for qualitative reasoning about
distances in the form of a modal logic formalism. Naturally, this logic is
much less expressive than its first-order counterpart and it is decidable
with an NP-complete satisfiability problem. We also provide a complete
finite axiomatisation of the modal logic formalism.

Keywords: First-order logic, Modal logic, Knowledge representation,
Spatial reasoning

1. Introduction

In this paper we deal with the revitalization of Theodore de Laguna’s
notion of ‘can-connect’. Our purpose is to develop first-order and modal
logic formalisms that have the ability to represent and reason with com-
parative distance information. Laguna’s original idea appears in an article
[1] which he regards as an appendix to his “revisit to the basic elements
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of mathematical geometry from the window of actual human experience
[2, 3]”. This framework serves as a perfect basis for a qualitative formalism
that can be used for reasoning about distances.

At the heart of Laguna’s work lies his ontology built on the notion of
‘solids’2. Especially from a philosophical point of view, the discussion re-
garding the choice of suitable ontologies for spatial formalisms played an
important role in the field’s research [4, 5, 6, 7, 8, 9]. As Simons [10] says,
the problem is that, “nobody has ever perceived a ‘point’ or ever will do
so, whereas people have perceived individuals of finite extent”. In other
words, to the researchers of the field, using an ontological basis like the
one in question within formalisms that aim to represent and reason with
our physical surrounding space means an attractive harmony between
these formalisms and what they claim to be talking about. Unfortunately,
choosing such an approach over point-based representations generally im-
plies abandoning the comfort provided by using well-established standard
mathematical models.

The intended semantics of the can-connect notion can be described as
follows: A solid a can-connect two other solids, say b and c, whenever a
can be moved into simultaneous contact with solids b and c, while all the
solids a, b and c remain deformation-free during this process. By using this
notion, very simple but effective distance measurements between spatial
entities can be introduced in a very natural way: If a can-connect solids b
and c, but it can not d and e, then this implies that solid b is nearer to c,
than d is to e. From here, “equidistant objects” can also be easily defined.

This method of dealing with distances has four main advantages:
Firstly, we are able to handle the distance information between non-atomic
solids (instead of points) in a natural and cognitively plausible way. Sec-
ondly, we do not need to incorporate any numeric parameters or values
into formalisms which are built around can-connect, allowing mathemati-
cally much simpler theories to be formed. Thirdly, one can easily compare
two distances with each other within formalisms utilising can-connect; in
other words, we can make statements of the form “the distance between a
and b is greater than the distance between c and d”. This is important be-

2There are various versions of this terminology used across qualitative spatial reason-
ing literature including ‘individuals’, ‘regions’ and ‘volumes’. They have essentially the
same meaning.
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cause as the work of Wolter and Zakharyaschev on quantitative distance
logics shows, without the use of a notion like can-connect, comparison
of distances within formalisms is actually very difficult, if not impossible
[11]. Finally, as our results on the modal logic formalism will show, com-
putational feasibility of using this framework compared to other logical
approaches for reasoning about distances is great.

Given the fundamental importance of distance data across various ar-
eas of computer science, there are already many studies which developed
formalisms in various expressive levels to talk about distance information
[12, 13, 14, 15, 16, 17, 11]. Even non-Euclidean distances are of interest in
computer science: In the development of ‘logics of similarity’ in the field
of approximate reasoning [18, 19], similarity measures are used to classify
various sets of objects [20] and require reasoning in metric spaces that are
non-Euclidean. In spatial reasoning, distance information is especially im-
portant as it deals with the physical space and distance information allows
one of the most basic types (besides more abstract topological information)
of relationships between spatial entities to be established. Moreover, with
detailed distance information one can even represent and reason about the
size and shape aspects of spatial entities [21].

However, the investigation of the theoretical properties of reasoning
with distances came only recently with the “logics of metric spaces” [17]
combining elements from modal and description logics to form formalisms
that can reason with the standard mathematical model of distances, i.e.,
metric spaces. Results only show that, computationally most feasible log-
ical fragments of these formalisms have an NEXPTIME upper bound. An
extensive study along the same line of work combining topology and
metric offers an EXPTIME-complete formalism [11]. Unfortunately these
results draw a rather gloomy picture about the computational feasibility
of reasoning about distance information and shows the need for a more
qualitative approach accompanied with theoretical investigations of com-
putational properties.

We construct two types of languages in which we embed can-connect
relation: First, we embed the ternary can-connect relation into a first-order
language and interpret it using standard metric spaces. We provide a finite
axiomatisation of the resulting first-order logic and prove the correspond-
ing representation theorems. Our axiomatisation provides ‘mereology’ as
a subtheory, just like axiomatisations of topological ‘connection’ relation
in the literature bring mereology as a subtheory [22]. Moreover, our first-
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order logic allows construction of new solids from the old ones, e.g., given
a and b, the sum of a and b, the product of a and b and also their comple-
ments are parts of the theory as well. This naturally implies that one can
make expressions of the form “while neither a nor b can-connect c and d,
a + b can-connect c and d”. Unfortunately, we also establish that this logic
has an undecidable satisfiability problem.

In the second part of the paper, we introduce a polyadic multi-modal
language with the usual Kripkean semantics built around can-connect.
This language mainly consists of a polyadic modality of the form 〈CC〉(ϕ,ψ),
with the intended semantics that “here can connect somewhere ϕ and
somewhereψ”. We introduce a “relational semantics version” of the metric
spaces suitable to interpret can-connect primitive together with an equiv-
alence result. Using relational semantics, finite model property and decid-
ability results follow. Finally we establish that the satisfiability problem is
NP-complete. In terms of logical properties, we provide a complete finite
axiomatisation of this modal logic and prove the necessary representation
theorems.

2. First-Order Comparative Distance Logic

The goal of this section is to develop a first-order logic which can
talk about distance information in a qualitative and cognitively plausible
manner, parallel to the main scheme of the paper. In this section we will
also introduce the core semantic structure which we will be working with
throughout the entire paper. The main characteristic of the structure in
question is that it embeds the notion of ‘individuals’ (in contrast to points)
inside metric spaces. Distance information between individuals will be
handled with the help of Laguna’s notion of can-connect. Unfortunately,
one of the main results of this section will be that despite its simplicity,
reasoning about qualitative distances via such structures in a first-order
setting is computationally infeasible.

2.1. Language and Semantics
We begin by introducing the first-order language L1, which has the

usual properties that can be expected from any first-order language. L1

contains denumerably many variable symbols, which we generally denote
by x, y, z, . . . etc. and denumerably many constant symbols, which we
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generally denote by c1, c2, c3, . . . etc. A term in the language L1 is either a
variable or a constant.

Naturally, L1 contains the standard basic boolean operators ∨,¬ and
the constant verum > besides the first-order existential quantifier ∃. The
operators of ∧,→,↔,⊥ and ∀ represent the usual duals and shorthands
for the aforementioned basic operators. Finally and most importantly, L1

contains a non-logical, ternary primitive relation symbol CC.
Atomic formulas ofL1 are expressions in the form t1 = t2 or CC(t1, t2, t3),

where t1, t2 and t3 are terms. Arbitrary formulas ofL1 are generated in the
usual recursive manner using the basic operators of the language.

The language L1 is interpreted over models based on structures which
consist of a metric space and a set of ‘individuals’. Hence, we call them
‘metric structures with individuals’. More precisely, we will be dealing
with structures in the following form:

F =
〈
W, d, I

〉
where 〈W, d〉 is a metric space and I is a set each member of which is called
an ‘individual’ and satisfy the following constraints:

(CNT1) I ⊆ 2W and W ∈ I,

(CNT2) ∀x ∈ I[x , ∅],

(CNT3) ∀p ∈W[{p} ∈ I],

(CNT4) ∀x ∈ I[x ,W⇒∼ x ∈ I],

(CNT5) ∀x ∈ I∀y ∈ I[x ∩ y , ∅ ⇒ x ∩ y ∈ I],

(CNT6) ∀x ∈ I∀y ∈ I[x ∪ y ∈ I].

Now, our models are pairs in the form:

M =
〈
F,C
〉

where F is a metric structure with individuals and C is a function inter-
preting the constants symbols of L1 as individuals from I.

Let α, β be two formulas, t1, t2 be two terms and let a be an assignment
function mapping free occurring variables to the elements of I. The in-
terpretation of arbitrary L1 formulas is achieved in the usual inductive
manner by defining a relation of truth |=a as follows:
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• M |=a >,

• M |=a α ∧ β iffM |=a α andM |=a β,

• M |=a ¬α iffM 6|=a α,

• M |=a t1 = t2 iff a(t1) = a(t2),

• M |=a CC(x, y, z) iff

∃p1∃p2∃p3∃p4

[
p1 ∈ a(y) ∧ p2 ∈ a(z) ∧ p3 ∈ a(x) ∧ p4 ∈ a(x)∧

d(p1, p2) ≤ d(p3, p4)
]
,

• M |=a ∃xα iffM |=b α where b is an assignment which differs from a,
if at all, only on x.

The class of all metric models with individuals is denoted by M. As
usual, validity (of a formula α) in every metric model with individuals
under any assignment is denoted by writing M |= α.

2.2. Axiomatisation
Combining the axioms and inference rules for first-order logic with

the axioms intended to capture the necessary properties of comparative
distance logic, which are given below through AXM1 to AXM10, results
with the formation of a proof system, its theory which we will denote by
AxCD1 and denote its ‘relation of proof’ by `. A proof in this proof system
is a usual sequence of sentences of L1 such that each sentence is either
an axiom of the system or derivable from the previous elements of the
sequence using modus ponens or universal generalisation, in which case
we write AxCD1 ` α, where α is the formula proved. Short comments
about definitions and axioms follows.

(AXM1) ∀x∀y[CC(x, y, y)],

(AXM2) ∀x∀y∀z[CC(x, y, z)→ CC(x, z, y)],

(AXM3) ∀x∀y∀z∀p∀q[CC(x, y, z) ∧ ¬CC(x, p, q)→ ¬∃r[CC(r, p, q) ∧
¬CC(r, y, z)]],

(DEF) I(x, y) ≡def ∀z[CC(z, x, y)],
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(AXM4) ∀x∀y[∀z[I(x, z)↔ I(y, z)]→ x = y],

(AXM5) ∃x∀y[I(x, y)],

(DEF) P(x, y) ≡def ∀z[I(x, z)→ I(y, z)],

(AXM6) ∀x∀y∃z∀p[I(z, p)↔ [I(x, p) ∨ I(y, p)]],

(AXM7) ∀x∀y[I(x, y)→ ∃z∀p[I(z, p)↔ ∃q[P(q, x) ∧ P(q, y) ∧ I(p, q)]]],

(AXM8) ∀x[∃y¬I(x, y)→ ∃z∀p[I(z, p)↔ ∃q[¬I(q, x) ∧ I(q, p)]]],

(DEF) A(x) ≡def ∀y[P(y, x)→ x = y],

(AXM9) ∀x∃y[A(y) ∧ P(y, x)],

(DEF) AP(x, y) ≡def A(x) ∧ P(x, y),

(DEF) (x, y) ≤ (z, p) ≡def ∀q[CC(q, z, p)→ CC(q, x, y)],

(DEF) (x, y) = (z, p) ≡def (x, y) ≤ (z, p) ∧ (z, p) ≤ (x, y),

(DEF) (x, y) < (z, p) ≡def (x, y) ≤ (z, p) ∧ ¬(x, y) = (z, p),

(AXM10) ∀x∀y∀z[CC(x, y, z)↔ ∃p∃q∃r∃s[AP(p, x) ∧ AP(q, x) ∧
AP(r, y) ∧ AP(s, z) ∧ (r, s) ≤ (p, q)]].

The first three axioms are very intuitive, they capture the essential
properties of the notion of can-connect: Axiom AXM1 states that any entity
can-connect any other entity with itself. With the axiom AXM2 symmetric
nature of can-connect notion is captured: If an entity can-connect other two
entities y and z, then it also can-connect z and y. AXM3 is the following
property of can-connect: If an entity can-connect a pair of entities but it
can-NOT-connect some other pair, then there could be no entity which can-
connect the latter pair and yet can-NOT-connect the former pair. Axiom
AXM4 is the identity axiom. It allows us to establish the identity of entities
based on our primitive notion of can-connect.

The definition for the predicate I(x, y) captures the non-empty inter-
section of x and y, i.e., it is true whenever two solids share a common
sub-solid. This is proved in Theorem 2.2. Based on the definition of the in-
tersection predicate, we go ahead and define the parthood predicate P(x, y)
from which all mereological relations can easily be defined with the help
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of the first-order expressiveness. A proof that parthood predicate actually
corresponds to the subset relation is proved in Theorem 2.2. The other
important definition worth mentioning is that of an atom. Intuitively, A(x)
stands for ‘x is a point’. An atom-solid is a solid which contains only itself
as a part; it has no other parts. In other words, with our axiomatisation we
rediscover points from solids.

Axioms AXM5, AXM6, AXM7 and AXM8 create new entities from the
old ones with the help of the identity axiom. More precisely, AXM5 entails
the existence of a unique universe which we shall denote by U. Given two
entities x and y, while AXM6 entails the existence of a unique entity x + y,
AXM7 entails the existence of a unique entity x ∗ y, whenever we have
I(x, y). Finally, AXM8 entails the existence of a unique entity −x, whenever
we have ∃y¬I(x, y).

Finally, axiom AXM9 states that every entity contains an atomic entity
(entities whose only sub-part is itself) and axiom AXM10 manifests the
interaction between atomic entities and can-connect primitive.

Many similar axiomatisations can be found in the literature of spatial
logics. For example, Asher and Vieu present a successful axiomatisation
of mereotopology (“geometry of common sense”) [22]. However, there
are quite a number of problematic first-order axiomatisation attempts with
regard to their basic logical properties as well [23]. Such problems are often
in the form of inconsistent axiom systems [5] or semantically incomplete
systems [24]. There are even studies with the pursuit of achieving an
absolutely complete (in contrast to semantic completeness which is what
we deal with in this paper) first-order axiom systems [25], which is an
impossible task given the likely undecidability of such logics [26] and the
fact that every absolutely complete and recursively enumerable theory
must be decidable.

The following lemma will be used in the forthcoming proofs:

Lemma 2.1. The following formulas are theorems of AxCD1:

• ¬[(c1, c2) ≤ (c3, c4) ∧ (c3, c4) < (c1, c2)],

• [(c1, c2) ≤ (c3, c4) ∧ (c3, c4) = (c5, c6)]→ (c1, c2) ≤ (c5, c6).

Proof. In order to see through the first claim, note that (c1, c2) ≤ (c3, c4) ∧
(c3, c4) < (c1, c2) is, by definition, equivalent to (c1, c2) ≤ (c3, c4) ∧ (c3, c4) ≤
(c1, c2)∧¬(c3, c4) = (c1, c2), which is again by definition equivalent to (c3, c4) =
(c1, c2) ∧ ¬(c3, c4) = (c1, c2), which is a contradiction.
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For the second claim, note that by definition (c1, c2) ≤ (c3, c4) ∧ (c3, c4) =
(c5, c6) implies that (c1, c2) ≤ (c3, c4)∧(c3, c4) ≤ (c5, c6). This obviously implies
that (c1, c2) ≤ (c5, c6). �

2.3. Soundness and Completeness Theorems
Establishing a semantical foundation for any kind of spatial logic is

essential. The lack of such investigations in the study of several spatial
logics has been subject of righteous criticism from within the field [23]. This
is because of the fact that any spatial logic study which lacks necessary
semantical investigation, bears the risk of not being able to capture the
type of reasoning it promises to achieve. In other words, an established
semantical foundation guarantees that a logic is able to represent and
reason with the structures that are of interest.

In this section, we will establish that the first-order comparative dis-
tance logic is sound and semantically complete with respect to the class
of all metric structures with individuals M. While the soundness has a
completely standard proof, completeness proof employs a Henkin-style
argument which consists of more interesting model construction proce-
dures.

Theorem 2.2 (Soundness). Let ϕ be a formula. We have that AxCD1 ` ϕ ⇒
M |= ϕ.

Proof. The proof is by induction on the complexity of ϕ. It is sufficient
to establish the base case, which amounts to show that all of the axioms
AXM1-AXM10 are valid on any metric model with individuals. So, first
let,

M =
〈
F,C
〉

be an arbitrary model where,

F =
〈
W, d, I

〉
is a metric structure with individuals.

First, let us establish the case of AXM1, i.e., thatM |= ∀x∀y[CC(x, y, y)].
It is sufficient to show that for every x ∈ I and for every y ∈ I there are
p1 ∈ x, p2 ∈ x, p3 ∈ y and p4 ∈ y such that d(p3, p4) ≤ d(p1, p2). Since x , ∅ , y
from CNT2, we can simply pick some arbitrary p1 = p2 ∈ x and p3 = p4 ∈ y
giving us d(p1, p2) = d(p3, p4) = 0, which is what we want.
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Now we focus on the case of AXM2. So we have to show that M |=
∀x∀y∀z[CC(x, y, z) → CC(x, z, y)]. We will proceed as follows: Suppose
that for some x, y and z in I, there are p1 ∈ x, p2 ∈ x, p3 ∈ y and p4 ∈ z
such that d(p3, p4) ≤ d(p1, p2). But since d is symmetric, it follows that
d(p4, p3) ≤ d(p1, p2), which gives us what we want.

Let us now consider axiom AXM3. This is slightly more complicated
than the previous cases. Assume that for some x, y, z, p and q in I, there
are p1 ∈ x, p2 ∈ x, p3 ∈ y and p4 ∈ z such that d(p3, p4) ≤ d(p1, p2) and on
the other hand, for every p′1 ∈ x, p′2 ∈ x, p′3 ∈ p and p′4 ∈ q we have that
d(p′1, p

′

2) < d(p′3, p
′

4).
Now, for the sake of a contradiction suppose that there is a r ∈ I such

that there are p5, p6 ∈ r, p7 ∈ p and p8 ∈ q such that d(p7, p8) ≤ d(p5, p6) while
for every p′1 ∈ r, p′2 ∈ r, p′3 ∈ y and p′4 ∈ z, we have that d(p′1, p

′

2) < d(p′3, p
′

4).
Combining the information we have so far, it easily follows that we

have d(p5, p6) < d(p3, p4) and d(p1, p2) < d(p7, p8). On the other hand, since
d(p3, p4) ≤ d(p1, p2), we conclude that d(p5, p6) < d(p7, p8), which contradicts
with the fact that we have d(p7, p8) ≤ d(p5, p6). This ends the case of axiom
AXM3.

Before we continue any further, let us establish the fact that for any
assignment a, we have that M |=a I(x, y) iff a(x) ∩ a(y) , ∅. To see this
from left to right, assume that M |=a ∀z[CC(z, x, y)]. This means that, for
every z ∈ I, there are p1 ∈ z, p2 ∈ z, p3 ∈ a(x) and p4 ∈ a(y) such that
d(p3, p4) ≤ d(p1, p2). Now suppose that z = {p5} for some p5 ∈ W. But this
implies that p1 = p2 = p5 and moreover that d(p1, p2) = 0. Hence, we must
have d(p3, p4) = 0. So, p3 = p4. Thus, a(x)∩ a(y) , ∅. The opposite direction
can be easily established by using a similar argument.

Similarly, we will show that for any assignment a, we have that M |=a
P(x, y) iff a(x) ⊆ a(y). For the direction from left to right, assume that we
haveM |=a P(x, y). Together with the previous paragraph this means that
for every z ∈ I, a(x) ∩ z , ∅ ⇒ a(y) ∩ z , ∅. For the sake of a contradiction,
suppose we have a(x) ⊃ a(y). This implies that there is a p1 ∈ a(x) such that
p1 < a(y). Since we have {p1} ∈ I due to CNT3, it follows that we must also
have a(y) ∩ {p1} , ∅. This is a contradiction.

For the opposite direction, suppose we a(x) ⊆ a(y). We will again
proceed with a contraposition argument. So assume thatM |=a ∃z[I(x, z) ∧
¬I(y, z)]. This implies that for some assignment b that differs from a only
on z, we have b(x) ∩ b(z) , ∅ ∧ b(y) ∩ b(z) = ∅. Since b(x) ⊆ b(y) by the
assumption, it follows that b(x)∩b(z) ⊆ b(y). This implies that b(y)∩b(z) , ∅,
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a contradiction.
Let us continue with the case of axiom AXM4. We will show that for

every x ∈ I and y ∈ I we have that ∀z[x ∩ z , ∅ ⇒ y ∩ z , ∅] ⇒ x ⊆ y. If
y = W then we are through. So assume that y , W. Then from CNT4, it
follows that ∼ y ∈ I. Suppose that for every x ∈ I and y ∈ I we have that
∀z[x∩z , ∅ ⇒ y∩z , ∅] and for sake of a contradiction, assume that x * y.
The latter implies that x∩ ∼ y , ∅. But from the hypothesis, this implies
that y∩ ∼ y , ∅, which is a contradiction.

The case of AXM6 is trivial once we observe that for every x ∈ I and
y ∈ I we have that x ∪ y ∈ I from CNT6 and thus, we can always select
this as an assignment for x + y. Now all that remains to be done is to show
that for every x ∈ I and y ∈ I we have that ∀z[(x ∪ y) ∩ z , ∅ ⇔ [(x ∩ z) ,
∅ ∨ (y ∪ z) , ∅]], which is a well known fact itself. A similar proof for the
validity of axioms AXM7 and AXM8 can be easily generated by using the
constraints CNT5 and CNT4, respectively. The case of axiom AXM5 is
absolutely trivial since W ∈ I.

Now, first notice that we haveM |=a A(x) iff a(x) is a singleton. Now, to
see the case of axiom AXM9, let x ∈ I. From CNT2, it follows that x , ∅.
Pick p1 ∈ x. Now from CNT3, it follows that {p1} ∈ I. Hence, we have
found a singleton {p1} such that {p1} ⊆ x.

Before we move into the case of AXM10, assume thatM |=a (x, y) ≤ (z, p).
By definition, we get that M |=a ∀q[CC(q, z, p) → CC(q, x, y)]. We will
show that this means inf{d(p1, p2) | p1 ∈ a(x), p2 ∈ a(y)} ≤ inf{d(p1, p2) |
p1 ∈ a(z), p2 ∈ a(p)}. For the sake of a contradiction, assume not. Then,
∃p1 ∈ a(z) and ∃p2 ∈ a(p) such that ∀p3 ∈ a(x) and ∀p4 ∈ a(y) we have
d(p1, p2) < d(p3, p4). Note that {p1, p2} ∈ I. From here, it follows that we
haveM |=b CC(q, z, p) andM 6|=b CC(q, x, y)] where b is an assignment which
differs from a only on q such that b(q) = {p1, p2}. This is a contradiction.

Now, finally to see the case of AXM10, assume that for some assignment
a we have M |=a CC(x, y, z). Then there are p1 ∈ a(x), p2 ∈ a(x), p3 ∈ a(y)
and p4 ∈ a(z) such that d(p3, p4) ≤ d(p1, p2). First notice that from CNT3 it
follows that {p1}, {p2}, {p3} and {p4} are all in I. Now, together with the above
paragraph it follows thatM |=b AP(p, x)∧AP(q, x)∧AP(r, y)∧AP(s, z)∧(r, s) ≤
(p, q) where b is an assignment which differs from a, if at all, on p, q, r and s
such that b(p) = {p1}, b(q) = {p2}, b(r) = {p3} and b(s) = {p4}.

�

We now turn our attention to the completeness of the axiomatic system
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AxCD1 with respect to the class of all metric models with individuals by
employing the well-known Henkin-argumentation in our proof. We begin
by recalling one of the standard lemmas which constitutes an important
part of the Henkinian proof method. This lemma has a well-known proof
and there is no need to provide one here:

Lemma 2.3 (Witness (or Saturation) Lemma). Every AxCD1-consistent set
of sentences Σ can be extended to a saturated set Σ′ in the extension of L1,
L

1(c1, c2, . . . ), such that Σ′ ` ∃xϕ → ϕ[ck/x], for every formula with one free
variable ϕ and ck is a witness for x.

Next, we present the Henkin-argument at the core of our completeness
proof, conveniently known as the “Henkin Lemma”. Unlike the previous
one, Henkin Lemma must be provided with a proof. Since the proof is
quite long, it is split into multiple shorter lemmata.

Lemma 2.4 (Henkin Lemma). Every AxCD1-consistent, maximal and satu-
rated set of sentences Γ yields a metric model with individuals M such that for
any formula ϕ, we have thatM |= ϕ iff ϕ ∈ Γ.

Proof. Let γ be a set of AxCD1-consistent set of sentences. Our main task
is to build an appropriate metric model with individuals. It follows from
the Lindenbaum’s Lemma and from the Saturation Lemma (Lemma 2.3)
that, we can extend γ to a AxCD1-consistent, maximal and saturated set
of sentences Γ. Now let C denote the collection of constants occurring in
Γ. We will utilise equivalence classes over constant symbols to create the
‘individuals’ of our model. In order to achieve this, we first define the
relation ≡ such that for every c1 ∈ C and c2 ∈ Cwe have that:

c1 ≡ c2 iff Γ ` c1 = c2.

Clearly,≡ is an equivalence relation overC. So let us define the equivalence
classes induced by the relation ≡ as follows:

|c1| = {c2 ∈ C | c1 ≡ c2}.

We have now constructed the basic elements of our model. However, in
our models individuals are represented as sets of points. So far, we have
only created the elements to stand for individuals. So we now need to
“fill” these individuals with suitable points.
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First, we define the universe -the set of all points- where our individuals
will inherit their points from. We will denote the universe by W and define
it as follows:

W = {c ∈ C | Γ ` A(c)}.

In other words, points are simply derived from the constants which are
“syntactically points according to Γ”. Now we have to assign points to the
corresponding individuals. This can be achieved quite easily as follows:

P(|c1|) = {c2 ∈W | Γ ` P(c2, c1)}.

Now we arrived at the most complicated and important part of the
proof: inducing a metric space over W. More specifically, we have to
define a metric function d : W×W→ R+

∪ {0} such that the existing metric
information within Γ is represented via d.

We will devote an inductive construction procedure which will take
points from W as the input and at the end of the procedure, it will return
a function d satisfying all the constraints we have mentioned in the above
paragraph. It is very important to note that W is a countable set, since
it is a subset of C which is in turn a subset of the denumerable language
L

1(c1, c2, . . . ) of the Witness Lemma 2.3. This observation is critical since
without the guarantee of countability, an inductive construction procedure can
not be used for higher cardinalities.

Before giving the procedure in detail, we will define some shorthands
for simplifying the specification of the procedure. First, we set up some
relations on W ×W. Let c1, c2, c3 and c4 in W. We set:

• (c1, c2) v (c3, c4) iff Γ ` (c1, c2) ≤ (c3, c4),

• (c1, c2) @ (c3, c4) iff Γ ` (c1, c2) ≤ (c3, c4) ∧ ¬(c3, c4) ≤ (c1, c2),

• (c1, c2) � (c3, c4) iff Γ ` (c1, c2) ≤ (c3, c4) ∧ (c3, c4) ≤ (c1, c2).

The procedure given below works by considering every different triple
of points from W, one triple in each iteration, until all the combinations of
all the points from W are handled. Given an arbitrary triple of points, say
c1, c2 and c3, there are three values (one for each of the pairs (c1, c2), (c2, c3)
and (c1, c3)) to be assigned by the procedure to the function d. In order to
keep a track of the pairs whose value has been already assigned (note that
same pairs will most likely occur within many different triples), they are
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added into a set as soon as their processing is finished by the procedure.
This tracking set is denoted AVn (Assigned Values), where n is the number
of iterations. Another relevant notation which we will frequently use is
the following:

d(AVn) = {d(c1, c2) | {c1, c2} ∈ AVn}.

In plain words, d(AVn) denotes the set of all values which are so far (until
nth iteration) assigned by the procedure.

The assignment of values to pairs is done in a certain order. Namely, be-
fore any processing, the procedure orders the pairs based on the constraints
inherited from Γ. For example, if we have that (c1, c2) ≤ (c2, c3) ≤ (c1, c3),
then the procedure begins by dealing with the pair {c1, c2} first, then deals
with the pair {c1, c3} in the second order and finally finishes assigning all
three pairs by processing the pair {c2, c3}.

Before we give the procedure in detail, let us finally analyse the un-
derlying strategy used by the procedure in assigning the values to d. The
procedure has to achieve two main goals: First of all, the metric constraints
concerning individuals inherited from Γ must be satisfied. Second of all, d
must satisfy the necessary constraints in order to qualify as a metric.

For the first goal, we rely on the fact that R+ is dense: the procedure is
always guaranteed to find appropriate values fromR+ to assign for d such
that the constrains inherited from Γ are satisfied.

In order to achieve the second goal, procedure ensures that in each
iteration, the value picked for the maximal pair is less than twice the value
picked for the minimal pair. This guarantees that the function d we end up
with satisfies the triangle inequality and becomes a metric.

Technically speaking, the strategy in question is implemented by using
yet another tracking set of values which we will denote by MPVn (Maximal
Pair Values), where n is the number of iterations. It works as follows: In
each iteration, half of the value assigned for the maximal pair is added
into MPVn. In the iterations that follow, the value to be assigned for the
minimal pair is chosen such that it is greater than all of the elements in
MPVn.

Let us now give the construction procedure in detail:

Construction 2.1 (Metric Construction). The procedure consists of two
main parts: The initial part in step 1 and the inductive step 2.

1. Assume that the first input to the procedure is the triple c1, c2 and
c3 from W such that (c1, c2) ≤ (c2, c3) ≤ (c1, c3). Pick three arbitrary
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elements r1, r2 and r3 from R+ such that the appropriate ones of the
following constraints are satisfied:
First pick r1 and r2:

• If (c1, c2) @ (c2, c3) then 0 < r1 < r2 < 2 · r1 or,

• if (c1, c2) � (c2, c3) then 0 < r1 = r2.

Now pick r3:

• If (c2, c3) @ (c1, c3) then 0 < r2 < r3 < 2 · r1 or,

• if (c2, c3) � (c1, c3) then 0 < r2 = r3.

Now make the assignments for the function d as follows:

• d(c1, c2) = d(c2, c1) = r1,

• d(c2, c3) = d(c3, c2) = r2,

• d(c1, c3) = d(c3, c1) = r3.

Set AV1 = {{c1, c2}, {c2, c3}, {c1, c3}} and MPV1 = { d(c1,c3)
2 }.

2. Assume that n−1th step has already been executed. If {{c1, c2} | c1, c2 ∈

W} = AVn−1, then quit the procedure. Otherwise, start executing the
nth step as follows: Pick a triple from W, say c1, c2 and c3, such that at
least one of the three pairs is not an element of AVn−1 -otherwise there
is nothing to do. Suppose that we have the following order among
the pairs: (c1, c2) ≤ (c2, c3) ≤ (c1, c3).

(a) Firstly, assign a value for d on the minimal pair (c1, c2):
If the pair is already processed by an earlier iteration of the
procedure, i.e., if {c1, c2} ∈ AVn−1, then skip this step and continue
with step 2b. Otherwise:

i. If ∀{x, y} ∈ AVn−1[(c1, c2) @ (x, y)] then:
• pick r ∈ R+ such that max MPVn−1 < r < min d(AVn−1)

and assign d(c1, c2) = d(c2, c1) = r.
ii. If ∀{x, y} ∈ AVn−1[(x, y) @ (c1, c2)] then:
• pick r ∈ R+ such that max d(AVn−1) < r < 2·min d(AVn−1)

and assign d(c1, c2) = d(c2, c1) = r.
iii. If ∃{x, y} ∈ AVn−1[(c1, c2) � (x, y)] then:

• assign d(c1, c2) = d(c2, c1) = d(x, y).
iv. If none of the above is the case then:
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• pick r ∈ R+ such that max{d(x, y) | {x, y} ∈ AVn−1∧(x, y) @
(c1, c2)} < r < min{d(x, y) | {x, y} ∈ AVn−1∧ (c1, c2) @ (x, y)}
and assign d(c1, c2) = d(c2, c1) = r.

v. Finally set AVn = AVn−1 ∪ {{c1, c2}}.
(b) Secondly, assign a value for d on the maximal pair (c1, c3):

If the pair is already processed by an earlier iteration of the
procedure, i.e., if {c1, c3} ∈ AVn−1, then skip this step and continue
with step 2c. Otherwise:

i. If ∀(x, y) ∈ AVn[(x, y) @ (c1, c3)] then:
• pick r ∈ R+ such that max d(AVn) < r <

min {2 ·min d(AVn), 2 · d(c1, c2)} and assign d(c1, c3) =
d(c3, c1) = r.

ii. If ∃(x, y) ∈ AVn[(c1, c3) � (x, y)] then:
• assign d(c1, c3) = d(c3, c1) = d(x, y).

iii. If none of the above is the case then:
• pick r ∈ R+ such that max{d(x, y) | {x, y} ∈ AVn ∧ (x, y) @

(c1, c3)} < r < min{min{d(x, y) | {x, y} ∈ AVn ∧ (c1, c3) @
(x, y)}, 2 · d(c1, c2)} and assign d(c1, c3) = d(c3, c1) = r.

iv. Finally set AVn = AVn ∪ {{c1, c3}} and MPVn = MPVn−1 ∪

{
d(c1,c3)

2 }.
(c) Thirdly, assign a value for d on the final pair (c2, c3):

If the pair is already processed by an earlier iteration of the
procedure, i.e., if {c2, c3} ∈ AVn−1, then skip this step and end the
current iteration. Otherwise:

i. If ∃{x, y} ∈ AVn[(c2, c3) � (x, y)] then:
• assign d(c2, c3) = d(c2, c3) = d(x, y).

ii. Otherwise:
• pick r ∈ R+ such that max{d(x, y) | {x, y} ∈ AVn ∧ (x, y) @

(c2, c3)} < r < min{d(x, y) | {x, y} ∈ AVn ∧ (c2, c3) @ (x, y)}
and assign d(c2, c3) = d(c3, c2) = r.

iii. Finally set AVn = AVn ∪ {{c2, c3}}.

Now it only remains to make the finishing touch: For every c ∈W, we set:

d(c, c) = 0.

This ends the construction procedure.

16



Let us make some final remarks about the procedure before proceeding
any further. First of all, note that all maximums and minimums of the
sets that are used in the procedure, e.g., min d(AVn−1), max MPVn etc., are
guaranteed to always exist. This can be easily shown by induction on n.

The fact that we have max MPVn−1 < min d(AVn−1), which was used in
step 2(a)i, can be seen through Lemma 2.6 below. On the other hand, the
fact that max d(AVn−1) < 2·min d(AVn−1) can also be proved in a similar way
to Lemma 2.6 by induction on n: In order to see the induction through, it
is sufficient to examine the elements added in step 2b, where the maximal
element of each step is added into AVn and to notice that they are always
< 2 ·min d(AVn).

In order to see that max{d(x, y) | {x, y} ∈ AVn−1 ∧ (x, y) @ (c1, c2)} <
min{d(x, y) | {x, y} ∈ AVn−1 ∧ (c1, c2) @ (x, y)} in step 2(a)iv, Lemma 2.5 is
sufficient. Validity of all of the other assumptions made in the rest of the
procedure can be verified in similar ways.

Now, we have to establish that the function d constructed by the pro-
cedure above is actually a metric. First of all, note that from Construction
2.1 it is obvious that d satisfies the following two constraints: ∀c1 ∈W and
∀c2 ∈W and ∀r ∈ R+

∪ {0}:

• d(c1, c2) = 0 iff c1 = c2 and,

• d(c1, c2) = r iff d(c2, c1) = r.

In other words, it only remains to establish that d satisfies the triangle
inequality. In order to establish that, we first need to prove the following
two lemmas:

Lemma 2.5. For every c1, c2, c3 and c4 in W, we have that (c1, c2) v (c3, c4) iff
d(c1, c2) ≤ d(c3, c4).

Proof. Let c1 ∈W, c2 ∈W, c3 ∈W and c4 ∈W and consider the procedure of
Construction 2.1 by which d is defined. Clearly, we have that {c1, c2} ∈ AVm

and {c3, c4} ∈ AVm for some m. So, if we could show for every n and any
{c1, c2} ∈ AVn and {c3, c4} ∈ AVn that we have (c1, c2) v (c3, c4) iff d(c1, c2) ≤
d(c3, c4), i.e., at any stage of the construction procedure the claim holds for
all the pairs processed so far, then we will have the proof we are looking
for. The proof of this claim is by induction on n.

The base case for n = 1 is immediate from step 1 of Construction 2.1. For
the inductive step, assume that for every {c1, c2} ∈ AVn−1 and {c3, c4} ∈ AVn−1
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we have (c1, c2) v (c3, c4) iff d(c1, c2) ≤ d(c3, c4). Now pick {c1, c2} ∈ AVn and
{c3, c4} ∈ AVn.

If both {c1, c2} ∈ AVn−1 and {c3, c4} ∈ AVn−1, then we are immediately
through by the induction hypothesis. So, suppose that we have {c1, c2} ∈

AVn−1 and {c3, c4} ∈ AVn \AVn−1.
This means that the pair {c3, c4} is added into AVn via either of the steps

2a, 2b or 2c. Firstly, suppose that the pair {c3, c4} is added into AVn via
step 2a of the procedure. In this step there are four exclusive cases to be
considered corresponding to each of the sub-steps:

In the case of 2(a)i, in order to see through the claim from left to right
direction assume that (c1, c2) v (c3, c4). However, this assumption contra-
dicts with step 2(a)i’s premise that ∀{x, y} ∈ AVn−1[(c3, c4) @ (x, y)], since we
have (c1, c2) v (c3, c4) and {c1, c2} ∈ AVn−1 by the previous assumption. This
means that such a pair can not be actually added in step 2(a)i.

Conversely, assume that d(c1, c2) ≤ d(c3, c4). Since {c1, c2} ∈ AVn−1, it
follows that d(c3, c4) < d(c1, c2), which is a contradiction. So, just like in the
opposite direction, it is impossible that a value for d(c3, c4) is assigned in
step 2(a)i under current assumptions.

In the case of 2(a)ii, we have that max d(AVn−1) < d(c3, c4). Therefore, we
have d(c1, c2) < d(c3, c4) since {c1, c2} ∈ AVn−1. There is nothing to show in
the opposite direction since we already have (c1, c2) @ (c3, c4) by the premise
of step 2(a)ii, which implies that (c1, c2) v (c3, c4).

In the case of 2(a)iii, in order to see through the claim from left to right
direction assume that (c1, c2) v (c3, c4). We have that (c3, c4)�(c5, c6) for some
{c5, c6} ∈ AVn−1 and d(c5, c6) = d(c3, c4). On the other hand, since we have
(c1, c2) v (c3, c4) it follows from Lemma 2.1 that we also have (c1, c2) v (c5, c6).
Now using the induction hypothesis it follows that d(c1, c2) ≤ d(c5, c6) =
d(c3, c4). The opposite direction follows in a similar way using the induction
hypothesis.

In the case of 2(a)iv, in order to see through the claim from left to right
direction assume that (c1, c2) v (c3, c4). We have that max{d(x, y) | {x, y} ∈
AVn−1 ∧ (x, y) @ (c3, c4)} < d(c3, c4). Since we have that (c1, c2) v (c3, c4) and
¬(c1, c2) � (c3, c4) (otherwise step 2a would have been finalised by the case
2(a)iii), it means that we have (c1, c2) @ (c3, c4). Since {c1, c2} ∈ AVn−1, it
follows that d(c1, c2) < d(c3, c4). The opposite direction is obvious.

Now, suppose that the pair {c3, c4} is added into AVn via step 2b of the
procedure. For this step, there are three exclusive cases to be considered
corresponding to the sub-steps:
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In the case of 2(b)i, since we have that {c1, c2} ∈ AVn−1 ⊆ AVn by the
assumption, it follows from the very premise that we already have (c1, c2) @
(c3, c4). Moreover, we get that d(c1, c2) < d(c3, c4) since max d(AVn) < d(c3, c4).
So, there is nothing to show for this case.

In the case of 2(b)ii first assume that (c1, c2) v (c3, c4). From the premise,
we have that (c3, c4) � (c5, c6) for some {c5, c6} ∈ AVn and d(c3, c4) = d(c5, c6).
From Lemma 2.1 it follows that (c1, c2) v (c5, c6). Since AVn−1 ⊆ AVn, there
are two possibilities: Either {c5, c6} ∈ AVn−1 or {c5, c6} ∈ AVn \ AVn−1. In
the former case, it follows from the induction hypothesis that d(c1, c2) ≤
d(c5, c6) = d(c3, c4). In the latter case, first notice that this implies that
{c5, c6} must have been added into AVn via step 2a. From what is already
established in the first part of this very proof regarding the case of step
2a, it follows that d(c1, c2) ≤ d(c5, c6), which gives us what we want since
d(c3, c4) = d(c5, c6). The opposite direction is very similar.

Now consider case 2(b)iii. We have that max{d(x, y) | {x, y} ∈ AVn ∧

(x, y) @ (c3, c4)} < d(c3, c4). Since (c1, c2) v (c3, c4) and ¬(c1, c2) � (c3, c4)
(otherwise step 2b would have been finalised by the sub-step 2(b)ii), we
have (c1, c2) @ (c3, c4). On the other hand, since we have {c1, c2} ∈ AVn−1 ⊆

AVn, it follows that d(c1, c2) < d(c3, c4) as desired.
For the opposite direction, assume that d(c1, c2) ≤ d(c3, c4). It is sufficient

to show that we do not have (c3, c4) @ (c1, c2). For sake of a contradiction,
suppose we have (c3, c4) @ (c1, c2). Since {c1, c2} ∈ AVn−1 ⊆ AVn and since
from the premise of step 2(b)iii we have d(c3, c4) < min{d(x, y) | {x, y} ∈
AVn ∧ (c3, c4) @ (x, y)}, it follows that d(c3, c4) < d(c1, c2). A contradiction.

Thirdly and finally, suppose that the pair {c3, c4} is added into AVn via
step 2c of the procedure. In this step, there are only two exclusive cases to
be considered corresponding to the sub-steps and the necessary proofs are
very similar to the previous cases.

�

Lemma 2.6. For every n ∈ N, x ∈ MPVn and {c1, c2} ∈ AVn, we have that
x < d(c1, c2).

Proof. The proof is by induction on n. The base case for n = 1 is obvious
from step 1 of Construction 2.1. For the inductive step, assume that for
every x ∈ MPVn−1 and for every {c1, c2} ∈ AVn−1, we have that x < d(c1, c2).
Now let x ∈MPVn and {c1, c2} ∈ AVn. Suppose that {c1, c2} ∈ AVn \AVn−1.
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Firstly, suppose that the pair {c1, c2} is added into AVn via step 2a of the
procedure. In this step, there are four sub-cases based on which a value
for d(c1, c2) is assigned:

In case 2(a)i we have that max MPVn−1 < d(c1, c2). So, if x ∈ MPVn−1,
then we are easily through.

Alternatively, suppose that x ∈ MPVn \ MPVn−1. First, note that the
set MPVn−1 is extended to MPVn in step 2b. If x was added into MPVn

either with step 2(b)i or with step 2(b)iii, one can easily derive from the
assignments made in these steps that we have x < d(c1, c2) in both cases.
Now suppose that x was added into MPVn with case 2(b)ii. Then, we have
that x = d(c3,c4)

2 for some {c3, c4} such that either {c3, c4} ∈ AVn−1 or {c3, c4} ∈

AVn \AVn−1. Former case implies that we have max MPVn = max MPVn−1.
But now we have that x ≤ max MPVn = max MPVn−1 < d(c1, c2), which is
what we want. The latter case implies that {c3, c4} was added into AVn in
step 2a. But this means that the pair {c3, c4} is actually the pair {c1, c2}. In
other words, we have that x = d(c1,c2)

2 < d(c1, c2).
In case 2(a)ii, we have that max d(AVn−1) < d(c1, c2). Now, if x ∈MPVn−1,

then from the induction hypothesis it follows that x < max d(AVn−1) <
d(c1, c2). The case of x ∈ MPVn \MPVn−1 has an almost identical proof to
the corresponding part of case 2(a)i in the above paragraph.

In case 2(a)iii, we have that d(c1, c2) = d(c3, c4) for some {c3, c4} ∈ AVn−1.
If x ∈ MPVn−1, then from the induction hypothesis it follows that x <
d(c3, c4) = d(c1, c2). We again leave the proof of case x ∈ MPVn \MPVn−1

since it can be easily derived from the case of 2(a)i.
Finally, in case 2(a)iv, we have that max{d(x, y) | {x, y} ∈ AVn−1 ∧ (x, y) @

(c1, c2)} < d(c1, c2). If x ∈ MPVn−1, then from the induction hypothesis it
follows that x < max{d(x, y) | {x, y} ∈ AVn−1 ∧ (x, y) @ (c1, c2)} < d(c1, c2) and
we are through. Case x ∈ MPVn \MPVn−1 can be derived from the above
corresponding case of 2(a)i.

If the pair {c1, c2} is added into AVn either via step 2b or step 2c, then it
suffices to notice that there is a pair {c3, c4} ∈ AVn \AVn−1 added in step 2a
such that (c3, c4) v (c1, c2) and as we established in the above, x < d(c3, c4).
Using Lemma 2.5, from here it follows that x < d(c1, c2) as desired. This
completes the proof. �

Let us now show that d satisfies the triangle inequality. Let c1, c2 and c3

in W. It is sufficient to establish that we have d(c1, c3) ≤ d(c1, c2) + d(c2, c3).
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Consider the ordering among the pairs {c1, c3}, {c1, c2} and {c2, c3}. We
consider two possibilities: Firstly, suppose that the pair {c1, c3} is not the
maximal pair. This means that we have either (c1, c3) v (c1, c2) or (c1, c3) v
(c2, c3). But then from Lemma 2.5, it follows that we have either d(c1, c3) ≤
d(c1, c2) or d(c1, c3) ≤ d(c2, c3). In either case, we get that d(c1, c3) ≤ d(c1, c2) +
d(c2, c3) as desired.

Secondly, suppose that (c1, c3) is the maximal pair. It is sufficient to
show that d(c1,c3)

2 ≤ d(c1, c2) and d(c1,c3)
2 ≤ d(c2, c3). Since (c1, c3) is the maximal

pair, it follows from step 2b of Construction 2.1 that for some n we have
that d(c1,c3)

2 ∈ MPVn and {{c1, c2}, {c2, c3}} ⊆ AVn. Now the desired result
follows immediately from Lemma 2.6 and this shows that d satisfies the
triangle equality. As we have already mentioned preceding Lemma 2.5, d
possesses all the other necessary properties and we conclude that the pair
〈W, d〉 is a metric space.

Finally, we are almost ready to put together our “Henkin model,” except
that we yet to define the set of individuals. But this can be done quite easily
by setting:

I = {P(|c|) | c ∈ C}.

We first set
F =
〈
W, d, I

〉
.

Now we can give our constructed model as follows:

M =
〈
F,C
〉
,

where C is a function interpreting the constant symbols such that for every
c ∈ C,

C(c) = P(|c|).

In order to complete the proof of the Henkin Lemma, we provide the
following two lemmata:

Lemma 2.7. Let ϕ be a formula. Then we have thatM |= ϕ iff ϕ ∈ Γ.

Proof. The proof is by induction on the complexity of ϕ. It is sufficient
to establish the base case alone, since the rest of the inductive cases are
highly routine. This amounts to prove that we have M |= CC(c1, c2, c3) iff
CC(c1, c2, c3) ∈ Γ.

In order to prove the claim in the direction from right to left, assume that
CC(c1, c2, c3) ∈ Γ. From axiom AXM10 we have ∃c′1∃c′′1 ∃c′2∃c′3[AP(c′1, c1) ∧
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AP(c′′1 , c1) ∧ AP(c′2, c2) ∧ AP(c′3, c3) ∧ (c′2, c
′

3) ≤ (c′1, c
′′

1 )]. Now, by the very
definition of P(|c1|) it can be easily seen that c′1 ∈ P(|c1|), c′′1 ∈ P(|c1|),
c′2 ∈ P(|c2|) and c′3 ∈ P(|c3|). Moreover, from Lemma 2.5 we get that d(c′2, c

′

3) ≤
d(c′1, c

′′

1 ). In other words, we haveM |= CC(c1, c2, c3) as desired.
Conversely, suppose that M |= CC(c1, c2, c3). Then there exists c′1 ∈

P(|c1|), c′′1 ∈ P(|c1|), c′2 ∈ P(|c2|) and c′3 ∈ P(|c3|) such that d(c′2, c
′

3) ≤ d(c′1, c
′′

1 ).
On the other hand, it follows from the construction that AP(c′2, c2), AP(c′1, c1)
, AP(c′′1 , c1) and AP(c′3, c3). Moreover, from Lemma 2.5, we get that (c′2, c

′

3) v
(c′1, c

′′

1 ). Now it follows from axiom AXM10 and the maximal consistency
of Γ that we have CC(c1, c2, c3) ∈ Γ as desired. This completes the proof. �

Lemma 2.8. F satisfies all constraints CNT1- CNT6, i.e., F is a metric structure
with individuals.

Proof. Let us begin by establishing that CNT1 is satisfied over F. By
definition, we have thatP(|c|) ⊆W for every c ∈ C. So, we clearly have that
I ⊆ 2W. On the other hand, from axiom AXM5 it follows that U ∈ C and
∀c ∈ C we have that Γ ` P(c,U). By definition, this entails that P(|U|) = W.
Hence, W ∈ I as desired.

Now lets show the case of CNT2. Let some arbitrary c1 ∈ C. We will
show that P(|c1|) , ∅. However, from axiom AXM9 we immediately get
that ∃c2[A(c2) ∧ P(c2, c1)]. So it follows that c2 ∈ P(|c1|). This proves CNT2.

To see the case of CNT3, let c1 ∈ W. Then by definition we have that
Γ ` A(c1). In other words, Γ ` ∀x[P(x, c1) → c1 = x]. However, this means
that P(|c1|) = {c1}. Since P(|c1|) ∈ I, the desired result follows.

We will finally establish that CNT6 is satisfied byF. The cases of CNT4
and CNT5 follow in a very similar way. Let x ∈ I and y ∈ I. By definition, it
follows that there are c1 ∈ C and c2 ∈ C such that x = P(|c1|) and y = P(|c2|).
On the other hand, from axiom AXM6 we derive that there exists c3 ∈ C

such that ∀p[I(c3, p)↔ [I(c1, p) ∨ I(c2, p)]].
Let z ∈ P(|c1|) ∪ P(|c2|). We will show that z ∈ P(|c3|). First assume

that z ∈ P(|c1|) (the case of z ∈ P(|c2|) can be established in a similar way).
Then by definition we get that AP(z, c1). This implies that I(c1, z) from the
definition of predicate P. So it follows that I(c3, z). However, since A(z), it
follows from axiom AXM7 and the definition of predicate A that P(z, c3).
So we finally get that z ∈ P(|c3|) as desired.

Conversely assume that z ∈ P(|c3|). So we have that AP(z, c3) and from
here that I(z, c3). Therefore, I(c1, z) ∨ I(c2, z). Since A(z), it follows that
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P(z, c1) ∨ P(z, c2). In other words, we have either z ∈ P(|c1|) or z ∈ P(|c2|),
i.e., z ∈ P(|c1|) ∪ P(|c2|). �

With Lemma 2.8, we also complete the proof of the Henkin Lemma. �

Now we finally conclude that,

Theorem 2.9 (Completeness). Let ϕ be a formula. Then we have that M |=
ϕ⇒ AxCD1 ` ϕ.

Proof. Follows directly from Lindenbaum’s Lemma, Saturation Lemma
(Lemma 2.3) and the Henkin Lemma (Lemma 2.4). �

2.4. Undecidability
Now we briefly examine the expressive strength of the first-order com-

parative distance logic:

Theorem 2.10. The satisfiability problem of L1 formulas in M is undecidable,
i.e., the first-order comparative distance logic is undecidable.

Proof. It follows that the same proof used to show the undecidability of
quantitative first-order distance logic [17] can be used to obtain the unde-
cidability of first-order comparative distance logic as well. The proof uses
a reduction from the theory of graphs, which is known to be hereditarily
undecidable [27]. This means that not only the graph theory itself is un-
decidable, but so is every subtheory of it. Recall that graphs are structures
in the form 〈W,R〉 where R is a reflexive and symmetric binary relation
on W ×W. Theory of graphs is then the logic arising by interpreting the
first-order language of a single binary relation symbol using graphs. For
more details see Rabin’s work [27].

We will begin by defining a metric structure with individuals for any
given graph. Let G = 〈W,R〉 be a graph. For every c1, c2 ∈W we set:

dR(c1, c2) =


0, if c1 = c2,
1, if c1 , c2 ∧ R(c1, c2),
2, if ¬R(c1, c2).

It is easy to show that 〈W, dR
〉 is a metric space and thatF(G) = 〈W, dR, I〉,

where I = 2W
− ∅, satisfies all the constraints CNT1-CNT6, i.e., F(G) is a

metric structure with individuals.
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Next, we define our syntactic translation. For every formula ϕ of the
language of graph theory, let ϕ† to stand for the translation of ϕ intoL1 by
replacing every occurrence of the atom R(x, y) by ∀z[CC(z, x, y)]. Note that
ϕ† is now a formula of L1 and we have that G |= ϕ iff F(G) |= ϕ†. To see
this, it is sufficient to establish that for any c1, c2 ∈W:

R(c1, c2) iff F(G) |=a ∀z[CC(z, x, y)], (1)

where a(x) = {c3 ∈W | d(c1, c3) ≤ 1} and a(y) = {c2}.
To prove (1), first suppose that a is an assignment as in the previous

paragraph. To see the validity of the claim from left to right, assume that
we have R(c1, c2) for some c1, c2 ∈W. Then by the definition of dR it follows
that either dR(c1, c2) = 0 or dR(c1, c2) = 1. In the former case, we immediately
derive that a(x) ∩ a(y) , ∅. On the other hand, if dR(c1, c2) = 1, then we
have that c2 ∈ a(x). So we get a(x) ∩ a(y) , ∅ again. It is obvious that
a(x) ∩ a(y) , ∅ implies F |=a ∀z[CC(z, x, y)].

Conversely suppose that F |=a ∀z[CC(z, x, y)]. Since every metric struc-
ture with individuals must contain at least one singleton-individual by
CNT3, this implies that a(x)∩ a(y) , ∅ and hence, dR(c1, c2) ≤ 1. Hence, we
have either dR(c1, c2) = 0 or d(c1, c2) = 1. In either case we have R(c1, c2) as
desired. This completes the proof of (1).

Consider the set of all formulas ϕ of the language of theory of graphs
such that ϕ† is true in every comparative distance model. From above, it
follows that this set is in fact a subtheory of the theory of graphs, which is
hereditarily undecidable, i.e., not only itself but every subtheory of graph
theory is undecidable. �

3. Modal Comparative Distance Logic

This section is devoted to the development of a modal logic formalism
which can talk about distance information in a comparative and qualitative
manner, just like the first-order logic of the previous section. The biggest
difference between this section and the previous one is naturally the use
of a much less expressive -hence, computationally much more feasible-
language to talk about essentially identical semantic structures, i.e., metric
structures with individuals.

3.1. Language and Semantics
We will use a modal language containing denumerably many propo-

sition letters the set of which will be denoted by P and its elements by
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p, q, r, . . . , and the usual basic boolean operators ∨ and ¬ together with the
standard proposition constants > and ⊥. The main component of the lan-
guage is the polyadic modal operator 〈CC〉(α, β) (‘here can-connect some-
where at which α and somewhere at which β’). We denote this language
by L. As we will demonstrate shortly, the standard S5 modal operator
∃ (‘global modality’) can be easily defined within the modal comparative
distance logic. Duals of the modalities 〈CC〉 and ∃ are denoted by [CC]
and ∀, respectively.

Despite of the fact that the modal operator ∃ can be obtained from
the language as outlined above, in some cases we will be better off with
a language which explicitly contains an individual S5 operator. Lemma
3.20 of the modal completeness theorem is the occasion in which we will
make use of explicitly defining this operator. This language, extending the
language Lmerely with the S5 operator ∃, will be denoted by L[〈CC〉,∃].

Naturally, we would like to interpret formulas ofL[〈CC〉,∃] over ‘met-
ric models with individuals’ (see Section 2.1). Or more precisely, with
structures of the form:

N =
〈
W, d, I,V

〉
,

where the pair 〈W, d〉 is a metric space, I ⊆ 2W (‘individuals’) and V : P →

2I is a valuation function. Arbitrary formulas are then interpreted as
follows: For all formulas α, β, every p ∈P and w ∈ Iwe have:

• N,w |= p iff w ∈ V(p),

• N,w |= α ∧ β iff N,w |= α and N,w |= β,

• N,w |= ¬α iff N,w 6|= α,

• N,w |= ∃α iff ∃u[N,u |= α],

• N,w |= 〈CC〉(α, β) iff

∃u∃v[∃p1 ∈ u∃p2 ∈ v∃p3 ∈ w∃p4 ∈ w
[d(p1, p2) ≤ d(p3, p4)] ∧N,u |= α and N, v |= β].

However, we would like to work with relational semantics and have
our formulas interpreted in the usual Kripkean way. The following section
deals with this switch and establishes the necessary equivalence theorem
between metric models and their relational representations.
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3.1.1. Relational Representation of Metric Models
In this section, we will introduce relational semantics for the modal

comparative distance logic, so that the formulas of L[〈CC〉,∃] will be
interpreted in the usual Kripkean way. Let us begin by introducing our
targeted relational structures.

A comparative distance frame is a structure which can be given by the
pair,

F =
〈
W,CC

〉
where W is the domain set the elements of which (‘states’) represent ‘indi-
viduals’ and CC is a ternary accessibility relation over W ×W ×W which
will be used to interpret the binary 〈CC〉modality. A comparative distance
frame F satisfies the following constraints:

(CNT1) ∀w∀u[CC(w,u,u)],

(CNT2) ∀w∀u∀v[CC(w,u, v)⇒ CC(w, v,u)],

(CNT3) ∀w∀u∀v∀y∀z[CC(w,u, v) ∧ ¬CC(w, y, z)⇒
¬∃t[CC(t, y, z) ∧ ¬CC(t,u, v)]].

Therefore, a comparative distance model based on a comparative dis-
tance frame F is as usual a pair,

M =
〈
F,V
〉

where V is a valuation function such that V : P → 2W, mapping propo-
sition letters to sets of states. Now, we are ready to give the relational
interpretation of L[〈CC〉,∃] formulas by defining a relation of truth in the
usual inductive way. For all formulas α, β, every w ∈ W and p ∈ P we
have:

• M,w |= p iff w ∈ V(p),

• M,w |= α ∧ β iffM,w |= α andM,w |= β,

• M,w |= ¬α iffM,w 6|= α,

• M,w |= ∃α iff ∃u[M,u |= α],

• M,w |= 〈CC〉(α, β) iff ∃u∃v[CC(w,u, v) andM,u |= α andM, v |= β].
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We denote the class of all comparative distance frames by F and the
class of all comparative distance models by M. We will write M |= ϕ
to denote the validity of the formula ϕ over every comparative distance
model. Modal comparative distance logic is the set of all formulas of the
languageL that are valid on every comparative distance model. Similarly,
modal comparative distance logic with global modality is the set of all
formulas of the language L[〈CC〉,∃] that are valid on every comparative
distance model.

Note that, under the given semantics, and in particular constraint
CNT1, we can obtain the ‘global modality’ as follows:

∃ϕ B 〈CC〉(ϕ,ϕ).

The following theorem shows that the relational semantics we intro-
duced above is a “true representation” of the original metric models.

Theorem 3.1. Let ϕ be a formula. There is a metric model with individuals
satisfying ϕ iff there is a comparative distance model satisfying ϕ.

Proof. Follows from Lemmas 3.2 and 3.3 below. �

The following lemma establishes the proof of Theorem 3.1 in the direc-
tion from left to right:

Lemma 3.2. For every formula ϕ, if there is a metric model with individuals
satisfying ϕ, then there is a comparative distance model satisfying ϕ.

Proof. Let,
M =

〈
W, d, I,V

〉
be a metric model with individuals, i.e., 〈W, d〉 is a metric space, I ⊆ 2W

and V is a valuation function mapping proposition letters to the subsets of
I. A comparative distance model N can be easily obtained from the metric
modelM by defining a ternary accessibility relation in the obvious way as
follows: For every w,u and v in I:

CC(w,u, v) iff ∃p1 ∈ w∃p2 ∈ w∃p3 ∈ u∃p4 ∈ v[d(p3, p4) ≤ d(p1, p2)].

Now set,
N =
〈
I,CC,V

〉
.
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Let ϕ be a formula. We will first establish that for every w ∈ I, we have
thatM,w |= ϕ iff N,w |= ϕ.

Let w ∈ I. The proof is by induction on the complexity of ϕ. Base
case and the boolean cases are standard. So consider the case when
ϕ = 〈CC〉(α, β) for some formulas α, β. We have that, M,w |= 〈CC〉(α, β)
iff ∃u∃v[∃p1 ∈ w∃p2 ∈ w∃p3 ∈ u∃p4 ∈ v[d(p3, p4) ≤ d(p1, p2)] andM,u |=
α andM, v |= β] iff (by the definition of CC above) CC(w,u, v) ∧ M,u |=
α andM, v |= β iff (induction hypothesis) CC(w,u, v)∧N,u |= α and N, v |= β
iff N,w |= 〈CC〉(α, β).

Now, it only remains to establish that N is a comparative distance
model. In order to see that N satisfies constraint CNT1, let w ∈ I and u ∈ I.
It is sufficient to pick two arbitrary points p1 ∈ w and p2 ∈ u to see that
0 = d(p2, p2) ≤ d(p1, p1) = 0. Hence, we have that CC(w,u,u).

Next, we show that N satisfies constraint CNT2. Let w ∈ I, u ∈ I and
v ∈ I such that CC(w,u, v). It follows that ∃p1 ∈ w∃p2 ∈ w∃p3 ∈ u∃p4 ∈

v[d(p3, p4) ≤ d(p1, p2)]. Since d is a metric, it follows that d(p4, p3) = d(p3, p4) ≤
d(p1, p2). Thus, it follows that CC(w, v,u) as desired.

Finally, we establish that CNT3 is satisfied. Let w,u, v, y, z and t from I
such that CC(w,u, v) ∧ ¬CC(w, y, z). Now, for the sake of a contradiction
suppose that we also have that ¬CC(t,u, v) ∧ CC(t, y, z). Then, by the
definition of CC, the following hold:

∃p1 ∈ w∃p2 ∈ w∃p3 ∈ u∃p4 ∈ v[d(p3, p4) ≤ d(p1, p2)] (2)

∃p5 ∈ t∃p6 ∈ t∃p7 ∈ y∃p8 ∈ z[d(p7, p8) ≤ d(p5, p6)] (3)

∀p′1 ∈ w∀p′2 ∈ w∀p′7 ∈ y∀p′8 ∈ z[d(p′1, p
′

2) < d(p′7, p
′

8)] (4)

∀p′5 ∈ t∀p′6 ∈ t∀p′3 ∈ u∀p′4 ∈ v[d(p′5, p
′

6) < d(p′3, p
′

4)] (5)

From (2), (3) and (5), it follows that d(p5, p6) < d(p3, p4) ≤ d(p1, p2). On the
other hand, from (2), (3) and (4), we get that d(p1, p2) < d(p7, p8) ≤ d(p5, p6),
which is a contradiction. This completes the proof of the lemma. �

The proof of Theorem 3.1 in the direction from right to left is given by
the following lemma, which has a more complicated proof compared to
Lemma 3.2.
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Lemma 3.3. For every formula ϕ, if there is a comparative distance model satis-
fying ϕ, then there is a metric model with individuals satisfying ϕ.

Proof. Let,
M =

〈
W,CC,V

〉
be a comparative distance model. As it will be established in Section 3.2,
modal comparative distance logic has the finite model property. Moreover,
an examination of the proofs of Section 3.2 will also show that the finite
model property result is established independently from the results of this
section. This means that, for our purposes, we can safely assume thatM is
a finite model and build up rest of the proof on this assumption.

The first step in our proof is to construct a metric model with indi-
viduals by taking the states of M as our domain of points and defining
an appropriate metric on it. However, we have already established in
Construction 2.1 that, given a set of comparative distance constraints over
pairs of individuals W2

×W2 (up to a size of ℵ0), one can always find a
metric space 〈W, d〉 in which the metric d embodies those constraints. The
relevant constraints in the current context together with their shorthands
can be given as follows:

• (w,u) v (v, y) iff ∀W[CC(W, v, y)⇒ CC(W,w,u)],

• (w,u) @ (v, y) iff (w,u) v (v, y) ∧ ¬(v, y) v (w,u),

• (w,u) � (v, y) iff (w,u) v (v, y) ∧ (v, y) v (w,u).

Moreover, Lemma 2.5 establishes that these constraints are passed on
to the constructed metric space, i.e., for every w,u, v and y in W we have
that:

(w,u) v (v, y) iff d(w,u) ≤ d(v, y).

Finally and most importantly, we define the basic concept which will
provide the cornerstone of the following construction procedure.

Definition 3.1 (Diameter and Extension of a Point). Given a finite metric
space 〈W, d〉 and a comparative distance frame 〈W,CC〉, a function D : W→
R+ is called a ‘diameter function’ iff for every w ∈W we have that:

max
{
d(u, v) | u, v ∈W ∧ CC(w,u, v)

}
< D(w) <

min
{
d(u, v) | u, v ∈W ∧ ¬CC(w,u, v)

}
.
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Now, for every w ∈ W, the ’extension of w’, denoted by E(w), is a point
which can be added to extend the given metric space to a new one, say
〈W′, d′〉, such that W′ = W ∪ {E(w)} and:

d′(w,E(w)) = D(w).

Now, we are ready to extend the metric space 〈W, d〉 to a metric model
with individuals using the following construction procedure.

Construction 3.1. The procedure consists of two main parts. In the first
part, we extend the given metric space 〈W, d〉 to a metric space where every
point in W is coupled by its extension. In the second part, we only put the
pieces together to construct the model we are after.

1. In this part, we will recursively extend the given metric space 〈W, d〉
by adding the extension of one point in each step. So, initially set
W′ = W and d′ = d, and repeat the following procedure until we have
E(w) ∈W′ for every w ∈W:

• Pick some w ∈W such that E(w) <W′.

• Extend the set W′ to W′′ as follows: W′′ = W′
∪ {E(w)}.

• Extend the function d′ to a function d′′ on W′′ as follows: For
every u, v ∈W′′:

d′′(u, v) =


0, if u = v = E(w);
D(w), if u = E(w) ∧ v = w (or vice versa);
d′(w, v) + D(w), if u = E(w) ∧ v , w (or vice versa);
d′(u, v), otherwise.

• Set W′ = W′′, d′ = d′′ and start over unless we have E(w) ∈ W′

for every w ∈W.

2. From the previous step, we have a metric space 〈W′, d′〉 extending
〈W, d〉 such that every point in W is coupled with its extension in W′.
Using this fact, we now create the set of individuals:

• For every w ∈ W, define I(w) = {w,E(w)}. We now set the set of
individuals as follows:

I = {I(w) | w ∈W}.
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• Finally, we set the valuation function as follows: For every p ∈
P :

V′(p) = {I(w) | w ∈ V(p)}.

Now, our final metric model with individuals can be obtained by
setting:

N =
〈
W′, d′, I,V′

〉
.

Following proofs establish that the metric model with individuals gen-
erated by the above construction is indeed what we are looking for.
Fact 3.1. Let w,u ∈W. Then the following statements hold:

1. d(w,u) = d′(w,u),
2. if w , u, then d′(E(w),E(u)) = d(w,u) + D(w) + D(u).

Proof. (1) is immediate from the construction. In order to see (2), let
w,u ∈ W such that w , u. Suppose that the procedure of Construction
3.1 added E(w) into W′ before it added E(u). By construction, we have that
d′(E(w),u) = d′(w,u) + D(w). In one of the following iterations, when the
procedure extends W′ by E(u), it sets d′(E(u),E(w)) = d′(u,E(w)) + D(u) =
d′(w,u) + D(w) + D(u) = d(w,u) + D(w) + D(u), which is exactly what we
wanted to find. �

Lemma 3.4. 〈W′, d′〉 is a metric space.

Proof. We first show that the structure 〈W′, d′〉 satisfies the identity axiom,
i.e., ∀w ∈ W′

∀u ∈ W′[d′(w,u) = 0 iff w = u]. Let w,u ∈ W′. Since 〈W′, d′〉 is
an extension of the metric space 〈W, d〉, we are only interested in the case
when at least one of w and u is an ‘extension’ of some other point.

It is easy to see from Construction 3.1 that, if w = u = E(v) for some
v ∈ W, then d′(w,u) = 0. Conversely, suppose that d′(w,u) = 0. Since
the ‘diameter’ of any point must be greater than 0 by Definition 3.1, it
follows from Construction 3.1 that the only way for this to happen is when
w = u = E(v) for some v ∈W.

It is completely trivial to see that the function d′ is symmetric. So, let
us now move on to show that it satisfies the triangle inequality. Picking
three arbitrary points from W′ to establish triangle inequality gives us
three possibilities to consider for the combination of extension and non-
extension points, each with multiple sub-possibilities. First, let w,u, v ∈W.
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From Fact 3.1 and Construction 3.1 and the fact that d is a metric, the
following can be easily seen:

1. The following two configurations of two extension points and one
non-extension point:

• d′(E(w),E(u))+d′(E(u), v) = d(w,u)+D(w)+D(u)+d(u, v)+D(u) ≥
d(w, v) + D(w) = d′(E(w), v);

• d′(E(w),u)+d′(u,E(v)) = d(w,u)+D(w)+d(u, v)+D(v) ≥ d(w, v)+
D(w) + D(v) = d′(E(w),E(v)).

2. The following two configurations of one extension point and two
non-extension points:

• d′(E(w),u) + d′(u, v) = d(w,u) + D(w) + d(u, v) ≥ d(w, v) + D(w) =
d′(E(w), v);

• d′(w,E(u))+d′(E(u), v) = d(w,u)+D(u)+d(u, v)+D(u) ≥ d(w, v) =
d′(w, v).

3. And finally, the following configuration for three extension points:

• d′(E(w),E(u)) + d′(E(u),E(v)) = d(w,u) + D(w) + D(u) + d(u, v) +
D(u) + D(v) ≥ d(w, v) + D(w) + D(v) = d′(E(w),E(v)).

Therefore, d′ satisfies the triangle inequality. Hence, the structure 〈W′, d′〉
is a metric space. �

Lemma 3.5. For every formula ϕ, we have thatM,w |= ϕ iff N, I(w) |= ϕ.

Proof. The proof is by induction on the complexity of ϕ. Base case and
the boolean cases are straightforward by Construction 3.1. So, let us now
consider the case of ϕ = 〈CC〉(α, β).

In the direction from left to right, suppose thatM,w |= 〈CC〉(α, β). Then,
∃u∃v[CC(w,u, v) andM,u |= α andM, v |= β]. By the definition of diameter
and extension (Definition 3.1), we have that d′(w,E(w)) = D(w) > d(u, v) =
d′(u, v). On the other hand, from the induction hypothesis we have that
N, I(u) |= α andN, I(v) |= β. Obviously, u ∈ I(u), v ∈ I(v) and w,E(w) ∈ I(w).
Thus, N, I(w) |= 〈CC〉(α, β).

Conversely, suppose that N, I(w) |= 〈CC〉(α, β). Then, ∃u ∈ W and
∃v ∈ W and there are points p1, p2 ∈ I(w), p3 ∈ I(u) and p4 ∈ I(v) such that
N, I(u) |= α and N, I(v) |= β and d′(p1, p2) ≥ d′(p3, p4). Moreover, from the
induction hypothesis we get thatM,u |= α andM, v |= β.
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Now, observe that we must have d′(p1, p2) = D(w) and that d′(p3, p4) ≥
d(u, v). So, it follows that D(w) ≥ d(u, v). By Construction 3.1, this implies
that CC(w,u, v). Hence, we get that M,w |= 〈CC〉(α, β) as desired. This
completes the proof of the lemma. �

Now the proof of Lemma 3.3 follows from Construction 3.1, Lemma 3.4
and Lemma 3.5. �

3.2. Finite Model Property and Decidability
In this section, we will show that the modal comparative distance logic

enjoys strong finite model property with respect to the class of all com-
parative distance models. In Section 3.1 we defined two modal languages,
L and L[〈CC〉,∃], the latter of which is a simple extension of the former
merely with the ‘global modality’. It is a well known fact that, whenever a
decidability result for a modal logic is obtained by using a filtration-based
technique to establish strong finite model property, the same can be done
with that modal logic’s extension by the global modality (Blackburn et al.
[28], pg. 418, par. 4 and also pg. 422, Theorem 7.8). Since L[〈CC〉,∃]
is merely an extension of L by the global modality ∃, it is sufficient to
establish that the modal comparative distance logic has the strong finite
model property in order to conclude that the modal comparative distance
logic with global modality also has the strong finite model property.

The proof that modal comparative distance logic has the strong finite
model property is a standard one based on the filtration technique. Given
a modelM and a formula ϕ, we will provide a procedure which constructs
a finite modelMFin such that ϕ is satisfied inM iff ϕ is satisfied inMFin. Let
us now start giving the details of this construction procedure.

Construction 3.2. We say that a set of formulas Σ is ‘symmetry-closed’
whenever we have that:

〈CC〉(α, β) ∈ Σ iff 〈CC〉(β, α) ∈ Σ.

Let Σ be a finite, symmetry and subformula closed set of formulas and
M = 〈W,CC,V〉 be a comparative distance model. We begin by defining a
relation over W ×W which we will denote by ≡Σ. For every w,u ∈W set:

w ≡Σ u iff ∀ϕ ∈ Σ[M,w |= ϕ⇔M,u |= ϕ].
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In plain words, ≡Σ is the modal equivalence relation with respect to the set
of modal formulas Σ. It is obvious that ≡Σ is an equivalence relation. We
denote the equivalence class of a w ∈ W induced by this relation with |w|.
We will now define the modelMFin by taking the ‘filtration ofM through
Σ’. This can be done by defining the following:

• WFin = {|w| | w ∈W};

• CCFin(|w|, |u|, |v|) iff for every〈CC〉(ϕ,ψ) ∈ Σ

[M,u |= ϕ andM, v |= ψ⇒M,w |= 〈CC〉(ϕ,ψ)];

• For every p ∈P such that p ∈ Σ, VFin(p) = {|w| |M,w |= p}.

Now finally set,
MFin =

〈
WFin,CCFin,VFin

〉
,

as the filtration ofM through Σ.

Let Σ be a finite, symmetry and subformula closed set of formulas
and let M = 〈W,CC,V〉 be a comparative distance model. If MFin =

〈WFin,CCFin,VFin
〉 is the filtration of M through Σ, then we have the fol-

lowing three lemmata:

Lemma 3.6. For every formula ϕ ∈ Σ and every state w ∈ W, we have that
M,w |= ϕ iffMFin, |w| |= ϕ.

Proof. The proof is by induction on the complexity of ϕ. The base case is
trivial from Construction 3.2 and the boolean cases are straightforward.
So, it only remains to establish the modal case when ϕ = 〈CC〉(α, β).

To see it from left to right, assume that M,w |= 〈CC〉(α, β). Then we
have that ∃u∃v[CC(w,u, v) ∧ u |= α and v |= β]. First, from here it follows
that we have CCFin(|w|, |u|, |v|). Moreover, from the induction hypothesis
it also follows that MFin, |u| |= α andMFin, |v| |= β. Hence, we get that
MFin, |w| |= 〈CC〉(α, β) as desired.

Now in order to see it in the opposite direction, assume that we have
MFin, |w| |= 〈CC〉(α, β). From here we get that ∃|u|∃|v|[CCFin(|w|, |u|, |v|) ∧
MFin, |u| |= α andMFin, |v| |= β]. Note that we have 〈CC〉(α, β) ∈ Σ since
ϕ ∈ Σ and 〈CC〉(α, β) is a subformula of ϕ and Σ is subformula-closed.
Moreover, from the induction hypothesis we get thatM,u |= α andM, v |= β.
But now, it follows from Construction 3.2 that M,w |= 〈CC〉(α, β). This
completes the proof of the lemma. �
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Lemma 3.7. MFin is a comparative distance model.

Proof. It is sufficient to establish that FFin = 〈WFin,CCFin
〉 is a comparative

distance frame, which amounts to show that the frame constraints CNT1-
CNT3 (see Section 3.1.1) hold over FFin.

Let us first establish that CNT1 is satisfied over FFin. Let |w|, |u| ∈
WFin and pick some 〈CC〉(α, β) ∈ Σ. Suppose that M,u |= α and M,u |=
β. Since F satisfies the frame constraint CNT1, it follows that we have
CC(w,u,u). Hence, M,w |= 〈CC〉(α, β). From Construction 3.2, we derive
that CCFin(|w|, |u|, |u|) as desired.

Let us now consider the case of CNT2. Let |w|, |u|, |v| ∈WFin and suppose
that CCFin(|w|, |u|, |v|). In order to see that we have CCFin(|w|, |v|, |u|), pick
some 〈CC〉(α, β) ∈ Σ and assume that M, v |= α and M,u |= β. Since
Σ is symmetry-closed, we have that 〈CC〉(β, α) ∈ Σ. By the assumption
and Construction 3.2, it follows that we have M,w |= 〈CC〉(β, α). Since F
satisfies CNT2, it is easy to see that this impliesM,w |= 〈CC〉(α, β). Hence,
from Construction 3.2, we get that CCFin(|w|, |v|, |u|).

Finally we address the case of CNT3. Let |w|, |u|, |v|, |y|, |z| ∈ WFin and
suppose that we have CCFin(|w|, |u|, |v|) ∧ ¬CCFin(|w|, |y|, |z|). For sake of
a contradiction, suppose that ∃|t| ∈ WFin such that ¬CCFin(|t|, |u|, |v|) ∧
CCFin(|t|, |y|, |z|).

From here, it follows that there is a 〈CC〉(α, β) ∈ Σ such that M, y |= α
andM, z |= β andM,w 6|= 〈CC〉(α, β). Since we also have that CCFin(|t|, |y|, |z|)
by the assumption, it follows thatM, t |= 〈CC〉(α, β). In the very same way,
it follows that there is a formula 〈CC〉(γ, δ) ∈ Σ such that M,u |= γ and
M, v |= δ and M, t 6|= 〈CC〉(γ, δ) and since CCFin(|w|, |u|, |v|), it also follows
thatM,w |= 〈CC〉(γ, δ).

To summarise, we have thatM, t |= 〈CC〉(α, β)∧¬〈CC〉(γ, δ) andM,w |=
〈CC〉(γ, δ)∧¬〈CC〉(α, β). Now it is easy to see that this contradicts with the
fact that F satisfies CNT3. This completes the proof of the lemma. �

Lemma 3.8. The size ofMFin is exponential in the size of Σ, i.e., |WFin
| ≤ 2|Σ|.

Proof. Define a function f : WFin
→ 2Σ such that for every |w| ∈ WFin we

have,
f (|w|) = {ϕ ∈ Σ |MFin,w |= ϕ}.

It is sufficient to show that f is a well-defined and injective function. To
see that f is well-defined, let |w|, |u| ∈ WFin and suppose that |w| = |u|. By
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definition, this means that w and u are modally equivalent with respect to
Σ. From here it immediately follows that f (|w|) = f (|u|).

To see that f is also injective, suppose that f (|w|) = f (|u|) for some
|w|, |u| ∈ WFin. By the definition of f , this means that w and u are modally
equivalent with respect to Σ. In other words, w ≡Σ u. Hence, |w| = |u| as
desired. �

Now it only remains to put the pieces together, which gives us the main
result:

Theorem 3.9 (Strong Finite Model Property). Let ϕ be a formula. If ϕ is
satisfiable over a comparative distance model, then it is satisfiable over a finite
comparative distance model of size at most 2|ϕ|. In other words, modal comparative
distance logic has the strong finite model property with respect to M, the class of
all comparative distance models.

Corollary 3.10 (Strong Finite Model Property). Modal comparative distance
logic with global modality has the strong finite model property with respect to M.

Moreover, we have that:

Lemma 3.11. The class of all finite comparative distance models is recursive.

Finally, we present our main result which follows directly from Theo-
rem 3.9, Corollary 3.10 and Lemma 3.11:

Theorem 3.12. Modal comparative distance logic and modal comparative dis-
tance logic with global modality have decidable satisfiability problems.

3.3. Computational Complexity
In this section we show that the modal comparative distance logic has

an NP-complete satisfiability problem. We adapt a proof method which
relies on the fact that modal comparative distance logic has the finite model
property, which was established in the previous section. In fact, the proof
will go a little bit further and establish that the modal comparative distance
logic has the polysize model property.

Core of the proof consists of Construction 3.3 below: Given a formula
ϕ and a finite model MFin, this construction procedure generates a new
model Mϕ by appropriately selecting states from MFin such that by the
end of the procedure, size of Mϕ is only polynomial in the size of ϕ (in
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contrast to the exponential model generated in the finite model property
proof above) and the satisfiability of ϕ can be preserved inMϕ. Now let us
continue with the details.

Construction 3.3. Let ϕ be a formula and,

MFin =
〈
WFin,CCFin,VFin

〉
be a finite comparative distance model such that MFin,W |= ϕ for some
W ∈ WFin. We will select suitable states from MFin to construct a new
modelMϕ such that the size ofMϕ is polynomial in the size of ϕ.

First, let 〈CC〉(α1, β1), . . . , 〈CC〉(αn, βn) be an enumeration of all of the
subformulas of ϕ in the form of 〈CC〉(·, ·) and which are are satisfiable
in MFin. For each pair of formulas αk and βk, where 1 ≤ k ≤ n, choose
a pair of states wk and uk from WFin such that wk and uk is a pair with
minimal distance in between satisfying formulas αk and βk, respectively.
More precisely, we choose a pair of states wk and uk from WFin such that:

[MFin,wk |= αk andMFin,uk |= βk]∧

∀v[∀y∀z[CCFin(v, y, z) andMFin, y |= αk andMFin, z |= βk]⇒

CCFin(v,wk,uk)]

(6)

Now, the critical question is whether such a pair of states can always
be found. However, since every formula 〈CC〉(αk, βk) is satisfied inMFin by
the assumption andMFin is a finite model, it is easy to see that such a pair
of states (wk and uk) must exist. So, we can now finally set:

• Wϕ = {W} ∪
⋃n

k=1{wk,uk},

• CCϕ = CCFin �Wϕ,

• Vϕ = VFin �Wϕ.

And finally set,
Mϕ =

〈
Wϕ,CCϕ,Vϕ

〉
.

Lemma 3.13. Mϕ is a comparative distance model.

Proof. SinceMϕ is a restriction ofMFin andMFin is a comparative distance
model, it follows straightforwardly that Mϕ satisfies constraints CNT1-
CNT3. �
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Lemma 3.14. For every subformula ψ of ϕ and every state w ∈Wϕ, we have that
MFin,w |= ψ iffMϕ,w |= ψ.

Proof. Let ψ be a subformula of ϕ. The proof is naturally by induction on
the complexity of ψ. Let w ∈ Wϕ. SinceMϕ is simply a restriction ofMFin,
base case follows trivially.

Now suppose ψ = ¬α. Then we have thatMFin,w |= ¬α iffMFin,w 6|= α
iff (by the induction hypothesis)Mϕ,w 6|= α iffMϕ,w |= ¬α.

Alternatively suppose thatψ = α∧β. Then,MFin,w |= α∧β iffMFin,w |= α
andMFin,w |= β iff (by the induction hypothesis)Mϕ,w |= α andMϕ,w |= β
iffMϕ,w |= α ∧ β.

Now we address the case of ψ = 〈CC〉(α, β). In the direction from left to
right, suppose that we haveMFin,w |= 〈CC〉(α, β). Since ψ is a subformula
ofϕ, it follows from (6) of Construction 3.3 that there must be a pair of states
uα and vβ in Wϕ such that they are the closest pair havingMFin,uα |= α and
MFin, vβ |= β. Now from the induction hypothesis we get that Mϕ,uα |= α
andMϕ, vβ |= β.

On the other hand, since we haveMFin,w |= 〈CC〉(α, β) by the assump-
tion, we get ∃u∃v[CCFin(w,u, v) ∧MFin,u |= α andMFin, v |= β]. But now
it follows as a consequence of (6) that we must have CCFin(w,uα, vβ) and
thus, CCϕ(w,uα, vβ) by the construction. This gives the desired result.

In the opposite direction, suppose that Mϕ,w |= 〈CC〉(α, β). Then we
have that ∃u∃v[CCϕ(w,u, v) ∧ Mϕ,u |= α andMϕ, v |= β]. Since Mϕ is
a restriction of MFin, it follows from here that CCFin(w,u, v). On the other
hand, from the induction hypothesis we get thatMFin,u |= α andMFin, v |= β.
This obviously implies thatMFin,w |= 〈CC〉(α, β) as desired.

�

Lemma 3.15. Modal comparative distance logic has the polysize model property.

Proof. A quick examination of Construction 3.3 reveals that the size ofMϕ

is only polynomial in the size of input formula ϕ. More precisely, the size
ofMϕ is equal to twice the number of modalities in the input formula plus
1 at the maximum. Thus, from Lemmas 3.14 and 3.13 we conclude that the
modal comparative distance logic has the polysize model property. �

Theorem 3.16. The satisfiability problem of modal comparative distance logic is
NP-complete.
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Proof. Since the class of all comparative distance frames can be defined by
a first-order sentence, it follows that the membership problem of the class
of all comparative distance models is polynomial ([28], pg. 376, Lemma
6.36). Now, from lemma 3.15 it follows that the satisfiability problem of
modal comparative distance logic is NP-complete ([28], pg. 375, Lemma
6.35). �

3.4. Soundness and Completeness Theorems
In this section, we provide an axiomatic system for syntactic reason-

ing with comparative distances. We will introduce an axiomatic system
and it will be shown again in this section that the introduced system is
sound and complete with respect to the class of all comparative distance
frames. Both the soundness and the completeness proofs follow a standard
methodology.

3.4.1. Axiomatic System
We begin by constructing an axiomatic system which we will denote

with AxCD�. Naturally, AxCD� consists of axioms for propositional logic,
the standard axioms of minimal modal logic K for each modal operator
we use and the axioms which capture the essential nature of comparative
distance reasoning. In addition to these, it contains the standard inference
rules of uniform substitution, generalization and of course, modus ponens.
This results with the following axiom schemata for AxCD�:

(AXM1) [CC](p→ q, r)→ [[CC](p, r)→ [CC](q, r)],

(AXM2) [CC](p, q→ r)→ [[CC](p, q)→ [CC](p, r)],

(AXM3) ∀(p→ q)→ [∀p→ ∀q],

(AXM4) ∃∃p→ ∃p,

(AXM5) p→ ∃p,

(AXM6) p→ ∀∃p,

(AXM7) 〈CC〉(p, q)→ ∃p ∧ ∃q,

(AXM8) ∃(p ∧ q)→ 〈CC〉(p, q),

(AXM9) 〈CC〉(p, q)→ 〈CC〉(q, p),
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(AXM10) 〈CC〉(p, q) ∧ ¬〈CC〉(r, s)→ ∀[〈CC〉(r, s)→ 〈CC〉(p, q)].

Axioms AXM1, AXM2 and AXM3 are those corresponding to the axioms
of the minimal modal logic K (AXM1 and AXM2 in the polyadic form)
making the logic generated by AxCD� a ‘normal modal logic.’ This is a
property which will be necessary in the application of some of the theorems
that are fundamental to our argumentation.

Axioms AXM4, AXM5 and AXM6 are the axioms more commonly
known by the names 4 (of transitive frames), T (of reflexive frames) and B
(of symmetric frames), respectively. They constitute (together with the K-
axioms) the axiom system of the modal logic S5 and in the current context,
they define the behaviour of our ∃ operator, which is obviously intended
as a S5 modality. Axiom AXM7 is called the inclusion axiom and it defines
the interaction between the modal operators 〈CC〉 and ∃.

Finally, axioms AXM8, AXM9 and AXM10 aim to syntactically capture
the nature of the comparative distance frame conditions CNT1, CNT2 and
CNT3 (see Section 3.1.1), respectively.

We will denote deduction in AxCD� by using the notation `AxCD� . So,
for any formula ϕ which is deductible in AxCD�, we write `AxCD� ϕ to
denote that ϕ is a theorem of the logic arising from system AxCD�. The
following theorem establishes that all theorems of the axiomatic system
AxCD� are tautologies for the class of all comparative distance frames F.

Theorem 3.17 (Soundness). For every formula ϕ, we have that `AxCD� ϕ ⇒
F |= ϕ.

Proof. It is sufficient to establish the validity of axioms AXM1 - AXM10
over arbitrary frames from F. So, let F = 〈W,CC〉 ∈ F and setM = 〈F,V〉
for some arbitrary valuation V.

While axioms AXM1, AXM2 and AXM3 are the axioms of minimal
modal logic K, axioms AXM4, AXM5, AXM6 and AXM7 are the well-
known axioms of S5. So, we will skip the well-known proofs for the
soundness of these axioms, which are obvious to the mind of the experi-
enced reader. Let us focus on the more interesting axioms AXM8, AXM9
and AXM10.

Let w ∈ W. In order to establish the soundness of AXM8, assume that
M,w |= ∃(p ∧ q). So, there is a u ∈ W such thatM,u |= p ∧ q. On the other
hand, since F is a comparative distance frame, it satisfies frame condition
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CNT1. Hence, we derive that CC(w,u,u). Thus, we getM,w |= 〈CC〉(p, q),
which is what we want.

For the case of AXM9, assume that we haveM,w |= 〈CC〉(p, q). We will
show that this implies M,w |= 〈CC〉(q, p). From the hypothesis, it follows
that ∃u∃v[CC(w,u, v)∧M,u |= p andM, v |= q]. Since F satisfies CNT2, we
have that CC(w, v,u). Hence,M,w |= 〈CC〉(q, p) as desired.

Finally, to address the case of axiom AXM10, first suppose that we have
M,w |= 〈CC〉(p, q)∧¬〈CC〉(r, s). From here, it follows that∃u∃v[CC(w,u, v)∧
M,u |= p andM, v |= q].

For sake of a contradiction, assume that we haveM,w |= ∃¬[〈CC〉(r, s)→
〈CC〉(p, q)]. This means that ∃y[M, y |= 〈CC〉(r, s) andM, y |= ¬〈CC〉(p, q)].
So, it follows that ∃z∃t[CC(y, z, t) ∧M, z |= r andM, t |= s].

Now let us put the pieces together: Since we haveM,w |= ¬〈CC〉(r, s), it
follows that ¬CC(w, z, t). Similarly, sinceM, y |= ¬〈CC〉(p, q), we conclude
that ¬CC(y,u, v). But then we have that CC(w,u, v)∧¬CC(w, z, t) while on
the other hand that CC(y, z, t)∧¬CC(y,u, v). This clearly violates the frame
condition CNT3 and it contradicts with the fact that F is a comparative
distance frame. �

We now turn our attention to the semantic completeness of axiomatic
system AxCD� with respect to the class of all comparative distance frames.
Completeness proof exploits the canonical model method based on maxi-
mal consistent sets of the logic.

We begin with the construction of the canonical model. Note that, since
AxCD� is a normal modal logic, it must be strongly complete with respect
to its canonical model ([28], pg. 199, Theorem 4.22), which can be defined
by the following construction.

Construction 3.4. This construction simply builds a model by using the
set of all maximal consistent sets in the following well-known way:

• W = {w | w is a maximal AxCD�-consistent set};

• For every w,u, v ∈W set:

CC(w,u, v) iff ∀α∀β[α ∈ u ∧ β ∈ v⇒ 〈CC〉(α, β) ∈ w];

• For every p ∈P set:

V(p) = {w ∈W | p ∈ w}.
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Finally, canonical frame and canonical model are set as follows:

F =
〈
W,CC

〉
and M =

〈
F,V
〉
.

We mention the following lemma and its theorem which will act as the
cornerstone of our completeness proof. The proofs are very well-known
and standard and can be found in Blackburn et al. [28]. A proof for the
Truth Lemma can be found on page 199 (Lemma 4.21) and a proof for the
Canonical Model Theorem is again on the same page (Theorem 4.22).

Lemma 3.18 (Truth Lemma). For every formula ϕ and state w ∈ W, we have
thatM,w |= ϕ⇔ ϕ ∈ w.

Combined with the Lindenbaum Lemma, Lemma 3.18 immediately
gives the following result:

Theorem 3.19 (Canonical Model Theorem). AxCD� is strongly complete with
respect toM.

In order to establish strong completeness of AxCD� with respect to the
class of all comparative distance frames, all that is needed to be demon-
strated is that the canonical frame F satisfies the frame conditions CNT1 -
CNT3. The following lemma deals with this issue.

We should also note that this lemma is the reason for using the language
L[〈CC〉,∃] instead of simpler L.

Lemma 3.20. F is a comparative distance frame, i.e., it satisfies frame conditions
CNT1 - CNT3.

Proof. We begin by showing that constraint CNT1 is satisfied by the canon-
ical frame F. Let w,u ∈ W and also let ϕ and ψ be any two formulas such
that ϕ,ψ ∈ u. From Lemma 3.18, it follows that M,u |= ϕ ∧ ψ. Using the
well-known canonicity of S5 we have thatM,w |= ∃(ϕ∧ψ)3. So, again from
Lemma 3.18, it follows that ∃(ϕ ∧ ψ) ∈ w. On the other hand, since w is a
maximal consistent set, it must contain the formula ∃(ϕ∧ψ)→ 〈CC〉(ϕ,ψ),
which is an instance of AXM8. Since maximal consistent sets are closed
under modus ponens, it follows that 〈CC〉(ϕ,ψ) ∈ w. From Construction
3.4, we conclude that CC(w,u,u) as desired.

3Without the globality operator ∃, this step would not happen
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Now let us establish that constraint CNT2 is satisfied by F. Let w,u, v ∈
W and assume that CC(w,u, v). This means that, for all formulas ϕ′ and
ψ′ we have ϕ′ ∈ u ∧ ψ′ ∈ v ⇒ 〈CC〉(ϕ′, ψ′) ∈ w. Now let ϕ ∈ v and
ψ ∈ u. From the hypothesis, it follows that 〈CC〉(ψ,ϕ) ∈ w. As the formula
〈CC〉(ψ,ϕ) → 〈CC〉(ϕ,ψ) is an instance of AXM9, it must be contained
in w. Using modus ponens, it follows that 〈CC〉(ϕ,ψ) ∈ w. Thus, from
Construction 3.4 we get that CC(w, v,u).

Finally, we address the more interesting case of CNT3. Let w,u, v, y, z ∈
W and assume that we have CC(w,u, v) ∧ ¬CC(w, y, z). From here and
from Construction 3.4 it follows that for all formulas ϕ andψ, we have that
ϕ ∈ u ∧ ψ ∈ v ⇒ 〈CC〉(ϕ,ψ) ∈ w. On the other hand, we derive that there
are formulas α ∈ y and β ∈ z such that 〈CC〉(α, β) < w or equivalently, that
¬〈CC〉(α, β) ∈ w as w is maximal consistent.

For sake of a contradiction, assume that there exists a t ∈ W such
that ¬CC(t,u, v) ∧ CC(t, y, z). So, we have that for all formulas ϕ and ψ,
ϕ ∈ y∧ψ ∈ z⇒ 〈CC〉(ϕ,ψ) ∈ t. Moreover, it follows that there are formulas
γ ∈ u and δ ∈ v such that ¬〈CC〉(γ, δ) ∈ t.

Combining all the information we have gathered so far, first we have
that 〈CC〉(γ, δ) ∈ w and ¬〈CC〉(α, β) ∈ w, which entails that 〈CC〉(γ, δ) ∧
¬〈CC〉(α, β) ∈ w since w is maximal consistent. Moreover, since the formula
〈CC〉(γ, δ) ∧ ¬〈CC〉(α, β) → ∀[〈CC〉(α, β) → 〈CC〉(γ, δ)] is an instance of
AXM10, using modus ponens we derive that ∀[〈CC〉(α, β)→ 〈CC〉(γ, δ)] ∈
w. Using Lemma 3.18, it is easy to see that 〈CC〉(α, β) → 〈CC〉(γ, δ) ∈ t.
Since we also have 〈CC〉(α, β) ∈ t from the above, it follows that 〈CC〉(γ, δ) ∈
t, which is a contradiction since ¬〈CC〉(γ, δ) ∈ t and t is consistent. This
completes the proof of the lemma. �

We summarize our achievement with the following completeness the-
orem:

Theorem 3.21 (Strong Completeness). AxCD� is strongly complete with re-
spect to the class of all comparative distance frames, i.e., for every formula ϕ we
have that F |= ϕ⇒`AxCD� ϕ.

Proof. Follows directly from Theorem 3.19 and Lemma 3.20. �

4. Conclusion, Related Work & Future Research

Our goal was to develop computationally feasible logical formalisms
which can talk about distance information and investigate their logical and
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computational properties. We chose to base this study on Theodore de La-
guna’s qualitative notion of ‘can-connect’ [1] and it included a first-order
logic and a modal logic formalism which utilised Laguna’s framework to
talk about comparative distances between spatial entities or, as Laguna
himself put it, ‘solids’.

The expressive strength of the modal language is naturally limited.
But this was a goal rather than a deficiency as our main target was to
create a computationally feasible formalism. As a matter of fact, this
simplistic framework not only benefited us in terms of computational
efficiency, but it also enabled design of languages which do not need
any embedded numerical parameters or similar additional syntax to talk
about distances. Moreover, it helped us to work with distance information
using the cognitively plausible notion of ‘spatial entities’ in contrast to the
theoretically motivated ‘points’.

Our theoretical investigations have established that, while the first-
order comparative distance logic is finitely axiomatisable but undecidable,
modal comparative distance logic is finitely axiomatisable, enjoys the finite
model property and decidable. Moreover, we established that the satisfia-
bility problem of modal comparative distance logic is NP-complete.

In comparison to the ‘logics of metric spaces’ [17] which have only
some decidable fragments whose computational complexity have NEXP-
TIME upper bounds (lower bounds remain an open problem), this work
presents a much less expressive modal formalism which is computation-
ally much more feasible. Wolter and Zakharyaschev’s ‘logic of metric
and topology’ [11], which targets reasoning with the induced topologies
of metric spaces to create a formalism where qualitative and quantitative
approaches coexist, was shown to be EXPTIME-complete and it is thus
computationally also much more costly. But surprisingly enough, modal
comparative distance logic can manage something any of mentioned rel-
atively much more expressive logics can not: It is quite easy to compare
the distance between two spatial entities with modal comparative distance
logic, whereas in the case of aforementioned logics this is not possible at all
unless the language is modified in a non-trivial way [11]. We can simply
write the formula to state that ‘a is closer to b than c is to d’:

∀[〈CC〉(a, b)→ 〈CC〉(c, d)].

Looking at the future research potential, the first thing that comes to
mind when a modal logic is to be expressively strengthened, is to consider
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its hybrid extension. One of the immediate results of such an extension
would be that, we will be able to express when two solids overlap with the
following formula:

∀〈CC〉(i, j)

where i and j are nominal letters. It is hard to go any further than this using
modal satisfiability. For example, defining the subset relation between two
solids is beyond the limits of the modal language. However, modal logic
gives us the concept of validity,the dual of satisfiability, with which we can
get a better grasp of the frame level relationships. Using validity we can
now check if a is a subset of b as follows:

∀〈CC〉(a, i)→ ∀〈CC〉(b, j)

where i and j are nominal letters and, a and b are constant symbols. The
questions that follow are the expected: is such an extension going to be
decidable and if so, what its computational complexity going to be?

Finally, spatial reasoning is widely known for its use of mereotopolog-
ical relations. Despite of a past attempt to create a modal logic for such
relationships which ended with an undecidable modal logic [29], recently
it was shown that a decidable modal logic of such relations can be actually
formed [30]. Keeping in mind that there is an obvious limitation for talk-
ing about distance information using mere topological relationships, the
question regarding future research potential here is whether can-connect
primitive can be contained together with mereotopological relations within
a decidable modal logic or not. And if so, what would be the computational
cost of mixing them up?
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